• Mark Ellison headshot

Mark Ellison

Dr. Mark Ellison uses colorful, thought-provoking, and even explosive demonstrations to teach general chemistry and physical chemistry. He has a B.S. in chemistry from the University of Pittsburgh and a Ph.D. in physical chemistry from Stanford University. After postdoctoral research at the University of Wisconsin–Madison and then teaching for several years at Wittenberg University in Ohio, he came to Ursinus in Fall 2005.

His research seeks to investigate and develop useful properties of carbon nanotubes, and he has published eight articles about carbon nanotubes in scientific journals, including The Journal of Physical Chemistry, RSC Advances, and Nature Communications. He works with Ursinus biologists to study the toxicity of carbon nanotubes and how they might be used to deliver drugs to treat disease. Recently, he has established a collaborative research project, funded by the National Science Foundation, with Professor Michael Strano at the Massachusetts Institute of Technology to study the motion of ions through carbon nanotubes.

When not teaching or researching chemistry, Dr. Ellison enjoys canoeing, kayaking, hiking, camping, mountain bike riding, playing piano, baking pretzels or anything with chocolate, and spending time with his wife, Erica, and daughter, Rachel. Dr. Ellison coaches Rachel’s youth soccer team. Erica plays saxophone in the Ursinus Wind Ensemble.




  • B.S., University of Pittsburgh
  • Ph.D., Stanford University


  • General Chemistry I (Chem 105 and 105L)
  • General Chemistry II (Chem 206 and 206L)
  • Physical Chemistry I (Chem 309 and 309L)
  • Physical Chemistry II (Chem 310 and 310L)
  • Common Intellectual Experience 2 (CIE 200)

Research Interests

Chemistry of carbon nanotubes for applications in solar cells
Chemistry of carbon nanotubes for applications in drug delivery
Motion of ions through carbon nanotubes

Recent Work

“Synthesis and Toxicity Testing of Cysteine-Functionalized Single-Walled Carbon Nanotubes with Caenorhabditis elegans”, C. M. Goodwin*, G. G. Lewis*, M. D. Ellison, and R. Kohn, RSC Advances, 4 (2014) 5893-5900. (DOI: 10.1039/c3ra44888f)

“Diameter Dependent Ion Transport through the Interior of Single Isolated Single Walled Carbon Nanotubes”, W. Choi, Z. W. Ulissi, S. F. E. Shimizu, D. O. Bellisario, M. D. Ellison, and M. S. Strano, Nature Communications, 4: 2397 doi:10.1038/ncomms3397 (2013) Published on the web 12 September 2013

“Stochastic Pore Blocking and Gating in PDMS-Glass Nanopores from Vapor-Liquid Phase Transitions”, S. F. E. Shimizu, M. D. Ellison, K. Aziz*, Q. H. Wang, Z. W. Ulissi, Z. Gunther, D. O. Bellisario, and M. S. Strano, Journal of Physical Chemistry C, 117 (2013) 9641-51